Lockheed Martin Demonstrates JAGM Tri-Mode Seeker Against Moving Sea Targets In Captive Flight Tests

PR Newswire ORLANDO, Fla.

ORLANDO, Fla., June 7, 2011 / PRNewswire -- Lockheed Martin's (NYSE: LMT) Joint Air-to-Ground Missile (JAGM) tri-mode seeker successfully acquired and tracked multiple moving maritime vessels during recent high-speed, captive flight tests.

The tests occurred in the Gulf of Mexico, off the shore of Eglin Air Force Base, Fla., against multiple maritime targets, including a Revenge Advanced Composites (RAC) state-of-the-art, low-signature, high-speed patrol craft. The RAC performed a series of evasive maneuvers against Lockheed Martin's JAGM tri-mode seeker, mounted in the nose section of a Sabreliner Series 60 jet aircraft.

"These tests demonstrated the strong performance of our seeker design," saidFrank St. John, vice president of Tactical Missiles at Lockheed Martin Missiles and Fire Control. "There are many variables in tracking a target at sea, especially a moving target. Lockheed Martin's JAGM has clearly proven it fills all eight critical capability gaps identified and revalidated twice in the Joint Capabilities Integration and Development System (JCIDS) process."

The tests highlighted the robustness of the seeker on fixed-wing aircraft, as well as its performance against one of the most challenging targets in JAGM's target set. The tests also validated superior seeker performance in the demanding, high-humidity environment associated with contingency operations in the world's littorals.

The long-range, high-speed seeker tests were company funded. They collected data that validated the effectiveness of the seeker against sea targets at the maximum ranges of the fire-and-forget modes. Speeds during the test approached 400 knots at 20,000 foot altitude.

Captive flight testing against maritime targets was not required by the recently completed JAGM Technology Demonstration phase, but is part of the upcoming JAGM Engineering, Manufacturing and Development (EMD) phase. These tests reduce risk for EMD and demonstrate the seeker's capability to acquire and track a moving target at sea from the required range. The tests also demonstrated the mid-wave infrared technology used in Lockheed Martin's JAGM seeker is capable of acquiring and tracking targets during any typical engagement scenario.

JAGM is the next-generation air-to-surface guided missile that is being competed as the replacement for the currently fielded Airborne TOW, Maverick and HELLFIRE missiles for the U.S. Army, Navy and Marine Corps.

Threshold aviation platforms for JAGM include the U.S. Army's AH-64D Apache attack helicopter, MQ-1CGray Eagle unmanned aerial system and OH-58D CASUP Kiowa Warrior armed reconnaissance helicopter; the U.S. Marine Corps' AH-1Z Cobra attack helicopter; and the U.S. Navy's MH-60R Seahawk armed reconnaissance helicopter and F/A-18E/F Super Hornet jet fighter. JAGM initial operational capability (IOC) on the AH-64D, AH-1Z and F/A-18E/F is scheduled for 2016; IOC for the MH-60R, OH-58 CASUP and MQ-1C is 2017.

Headquartered in Bethesda, Md., Lockheed Martin is a global security company that employs about 126,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services. The Corporation's 2010 sales from continuing operations were \$45.8 billion.

For additional information, visit our websites:

http://www.lockheedmartin.com

http://www.lockheedmartin.com/jagm

SOURCE Lockheed Martin

https://news.lockheedmartin.com/2011-06-07-Lockheed-Martin-Demonstrates-JAGM-Tri-Mode-Seeker-Against-Moving-Sea- Targets-in-Captive-Flight-Tests